

Cool Structured Loops and Diffuse Hot Plasma Observed in Solar Flares

Steve Hill
Vic Pizzo
Chris Balch
Werner Neupert

June 3, 2002

Special Thanks for the Web Resources of:

SOHO/LASCO and SOHO/EIT (ESA and NASA) Yohkoh SXT (ISAS)

- Introduction
- Problem Statement
- Observations
- Analysis Approach
- Results

Post-Flare Loops

Motivation

- Post-flare magnetic reconnection and its relation to CMEs is poorly understood.
- The general model works qualitatively
- Numerous observed phenomena lack a clear explanation.
- 3-D effects and viewing geometry complicate the picture

Caveats

- We're just getting started view this as a progress report
- SXI calibrations and uncertainties are still being refined
- Why Apply SXI Data to the problem?
 - Spans the spectral region between EIT and SXT
 - Multi-band coverage
 - Rapid, continuous, full-disk cadence

Post-Flare Systems Background

Warren et al., 1999

Forbes *et al.*, 1989

Observations

- Four limb events under study
- Goodbye LEO eclipses and SAA!
- GOES-12 SXI
- SOHO EIT
- Yohkoh SXT

Date	Flare	CME	Location
2001-10-22	C3.3	YES	W Limb
2001-11-01	M3.4	YES	E Limb
2001-11-12	C7.0	YES	E Limb
2001-12-01	M2.2	YES	W Limb

Phenomenology

One day synchronized movie of EIT FeXII (reddish) and SXI Open filter (bluish)

Analysis Approach

- Image comparison to EIT and SXT images
 - SXI image PSF deconvolution
 - Examination of images
 - Synthesized 'low-pass' spectral filters
- Temporal evolution
 - Light curves
 - Centroid of emission
- Filter ratio image analysis
 - Compare SXI data to EIT data
 - Intensity versus emission in SXI

Response to Temperature

Filter Peak Sensitivity (MK)			1.000
FeIX/X (171A)	1.3		
FeXII (191A)	1.6	n se	0.100
FeXV (284A)	2.0	Response	
OPEN-PMED	2.5-2.6		
OPEN-BTHN	2.7-3.2	Relotive	0.010
OPEN	2.9-3.4		
PMED	3.8-4.0		
BTHN	5.0		0.001
			Δ

'Cool' Resolved Loops in SXI & EIT 1.6 MK 2.0 MK 2.6 MK

1.3 MK

3.0 MK

3.2 MK

'Hot' Diffuse/Spiky Features

in SXI & SXT 3.9 MK 5.0 MK

10:40

13:55

Light Curves

- Boxed region:
 - 10x10 minute region
 - 1000 arcsec W
 - 250 arcsec S
- Intensity curves normalized for max dynamic range
- ~2 hr delay before loops 'light-up' in EIT FeXII

Filter Ratio Temperature Method

- EIT provides good temperature resolution but is limited to narrow ranges
- SXI provides wider range of temperature determination, but still has non-unique solutions

EIT and SXI Filter Ratios

Peak Emission is Below Peak Temperature

Filter Ratio Movies?

Conclusion

- What is SXI telling us about:
 - Spiky arcades (McKenzie & Hudson, 1999)?
 - Diffuse hot sources/'horns' (Warren et al., 1999)?
 - Loop-top HXR sources (Nitta et al., 2001)?
 - Cusps? SXI saw several, but only one on the limb.
- SXI is well poised to address many research issues given its cadence and continuity in multiple spectral bands
 - SXI bridges the spectral gap between EIT and SXT
 - SXI data, in combination with EIT and SXT offers great potential to address issues with post-flare systems